Data Recovery
DADA RECOVERTY
DATA RECOVERY
INTRODUCTION :
In a computer, a file system -- sometimes written filesystem -- is the way in which files are named and where they are placed logically for storage and retrieval. Without a file system, stored information wouldn't be isolated into individual files and would be difficult to identify and retrieve. As data capacities increase, the organization and accessibility of individual files are becoming even more important in data storage.
File systems can differ between operating systems (OS), such as Microsoft Windows, macOS and Linux-based systems. Some file systems are designed for specific applications. Major types of file systems include distributed file systems, disk-based file systems and special purpose file systems.
How file systems work
A file system stores and organizes data and can be thought of as a type of index for all the data contained in a storage device. These devices can include hard drives, optical drives and flash drives.
- File systems specify conventions for naming files, including the maximum number of characters in a name, which characters can be used and, in some systems, how long the file name suffix can be. In many file systems, file names are not case sensitive.
- Along with the file itself, file systems contain information such as the size of the file, as well as its attributes, location and hierarchy in the directory in the metadata. Metadata can also identify free blocks of available storage on the drive and how much space is available.
Types of file systems
There are a number of types of file systems, all with different logical structures and properties, such as speed and size. The type of file system can differ by OS and the needs of that OS. The three most common PC operating systems are Microsoft Windows, Mac OS X and Linux. Mobile OSes include Apple iOS and Google Android.
Major file systems include the following:
- File allocation table (FAT) is supported by the Microsoft Windows OS. FAT is considered simple and reliable, and it is modeled after legacy file systems. FAT was designed in 1977 for floppy disks, but was later adapted for hard disks. While efficient and compatible with most current OSes, FAT cannot match the performance and scalability of more modern file systems.
- Global file system (GFS) is a file system for the Linux OS, and it is a shared disk file system. GFS offers direct access to shared block storage and can be used as a local file system.
- GFS2 is an updated version with features not included in the original GFS, such as an updated metadata system. Under the terms of the GNU General Public License, both the GFS and GFS2 file systems are available as free software.
- Hierarchical file system (HFS) was developed for use with Mac operating systems. HFS can also be referred to as Mac OS Standard, and it was succeeded by Mac OS Extended. Originally introduced in 1985 for floppy and hard disks, HFS replaced the original Macintosh file system. It can also be used on CD-ROMs.
- The NT file system -- also known as the New Technology File System (NTFS) -- is the default file system for Windows products from Windows NT 3.1 OS onward. Improvements from the previous FAT file system include better metadata support, performance and use of disk space. NTFS is also supported in the Linux OS through a free, open-source NTFS driver. Mac OSes have read-only support for NTFS.
- Universal Disk Format (UDF) is a vendor-neutral file system used on optical media and DVDs. UDF replaces the ISO 9660 file system and is the official file system for DVD video and audio as chosen by the DVD Forum.



